densed at -160° was C₂H₂ (6.8 mmol) while the fraction condensed at -130° contained only Si₂H₆ and ethynylsilane. Infrared spectral analysis of this mixture demonstrated that it consisted of 0.87 mmol of C2HSiH3 and 2.17 mmol of Si2H6. The fraction condensed at -95° (1.1 mmol) was a mixture of Si₃H₈ and ethynylvinylsilane while the fraction condensed at -78° was ethynyldivinylsilane (0.36 mmol). No vinylsilanes were detected.

In a similar experiment Si₂H₆ (3.36 mmol) and C₂H₃ (9.2 mmol) were pyrolyzed under the same conditions without SiH4 removal. A small amount of H₂ was produced. The other products were separated by trap to trap distillation. The fraction condensed at -196° was SiH4 (2.1 mmol) while that condensed at -160° was C₂H₂ (1.9 mmol). The fraction condensed at -130° (0.15 mmol) was a mixture of Si₂H₆. ethynylsilane, and vinylsilane. Condensed at -95° was a 1.62-mmol mixture of Si3H8, divinylsilane, and ethynylvinylsilane. Ethynyldivinylsilane (0.18 mmol) was condensed at -36°.

Pyrolysis of SiH4 in the Presence of C2H2. 1. Reaction in Thermal Zone A (24 mm \times 26 cm). Silane (4.43 mmol) and C₂H₂ (8.55 mmol) were pyrolyzed at 420° for 2 hr with a -119° bath on the "U" trap. After the reaction, 3.06 mmol of SiH4 remained (condensed at -196°). The fraction condensed at -160° was C₂H₂ (7.7 mmol). The fraction condensed at -130° having passed a -95° trap (1.0 mmol) was analyzed by infrared spectroscopy to contain Si₂H₆, vinylsilane, and ethynylsilane in an approximate ratio of 1:1:1.

2. Reaction in Thermal Zone B (10 mm × 29 cm). Silane (5.75 mmol) and C₂H₂ (5.8 mmol) were pyrolyzed at 420° for 2 hr with the -119° cold trap. With similar separations, SiH4 (5.3 mmol) and C₂H₂ (5.2 mmol) were found unreacted. The fraction (0.42 mmol) condensed at -130° (pass -95°) was analyzed by an infrared spectrum to contain Si₂H₆, vinylsilane, and ethynylsilane in an approximate ratio of 3:3:1.

3. Reaction in Thermal Zone C (10 mm × 10 cm). Silane (5.25 mmol) and C₂H₂ (5.73 mmol) were pyrolyzed at 440° for 2 hr. The reactants found after the pyrolysis were SiH4 (5.16 mmol) and C2H2 (5.66 mmol). The product fraction (0.2 mmol) condensed at -130° (pass -95°) contained Si₂H₆, vinylsilane, and ethynylsilane in an

approximate ratio of 15:50:1 as analyzed by infrared spectroscopy. In a similar experiment this last ratio was found to be approximately 12:20:1.

Acknowledgment. The authors are indebted to W. D. Jones for discussions concerning the orbital symmetry arguments.

Registry No. SiH4, 7803-62-5; Si2H6, 1590-87-0; SiH2, 13825-90-6; SiH₃, 13765-44-1; HC=CSiH₃, 1066-27-9; C₂H₂, 74-86-2.

References and Notes

- (1) J. H. Purnell and R. Walsh, Proc. Roy. Soc. London, Ser. A, 543 (1966). M. A. Ring, M. J. Puentes, and H. E. O'Neal, J. Am. Chem. Soc., 92, 4845 (1970). (2)
- (3) P. John and J. H. Purnell, J. Organomet. Chem., 29, 233 (1971).
- (3) F. John and S. H. Furner, J. Organomet. Chem., 27, 25 (1971).
 (4) D. G. White and E. G. Rochow, J. Am. Chem. Soc., 76, 3897 (1954).
 (5) (a) M. E. Volpin, Yu. D. Koreshkov, V. G. Dulova, and D. N. Kursanov, Tetrahedron, 18, 107 (1962); (b) R. West and R. E. Bailey, J. Am. Chem. Soc., 85, 2871 (1963); (c) F. Johnson, R. S. Gohlke, and W. H. Nasutavicus, J. Organomet. Chem., 3, 233 (1965); (d) W. H. Atwell and D. R. Weyenberg, J. Am. Chem. Soc., 90, 3438 (1968); (e) W. H. Atwell and J. G. Uhlman, J. Organomet. Chem., 52, C21 (1973); (f) T. J. Barton and J. A. Kilgour, J. Am. Chem. Soc., 96, 7150 (1974).

- (10) K. Fukui, Acc. Chem. Res., 4, 57 (1971); R. G. Pearson, ibid., 4, 152 (1971).
- (11) P. Estacio, M. D. Sefcik, E. K. Chan, and M. A. Ring, Inorg. Chem., 9, 1068 (1970).
- (12) M. Bowery and J. H. Purnell, J. Am. Chem. Soc., 92, 2594 (1970). (13) O. F. Zeck, Y. Y. Su, G. P. Gennaro, and Y. N. Tang, J. Am. Chem. Soc., 96, 5967 (1974)
- (14) R. L. Jenkins, R. A. Kedrowski, L. E. Elliott, D. C. Tappen, D. J. Schyler, and M. A. Ring, J. Organomet. Chem., 86, 347 (1975). (15) R. B. Reeves, R. E. Wilde, and D. W. Robinson, J. Chem. Phys., 40,
- 127 (1964).
- (16) E. J. Spanier and A. G. MacDiarmid, *Inorg. Chem.*, 1, 432 (1962).
 (17) S. G. Frankiss, *Spectrochim. Acta*, 22, 300 (1966).

Contribution from the Department of Chemistry, Michigan State University, East Lansing, Michigan 48824

Microwave Spectrum and Dipole Moment of Methyldifluorophosphine–Borane^{1,2}

ROBERT A. CRESWELL, R. A. ELZARO, and R. H. SCHWENDEMAN*

Received February 25, 1975

The microwave spectra of CH₃PF₂·¹¹BH₃, CH₃PF₂·¹⁰BH₃, CH₃PF₂·¹¹BD₃, and CH₃PF₂·¹⁰BD₃ have been assigned. Stark effect measurements gave the following values for the dipole moment and its components: $\mu_a = 3.52$ (5) D, $\mu_b = 1.76$ (5) D, $\mu_c = 0.0$ D, and $\mu = 3.94$ (5) D. The absence of resolvable internal rotation splittings in the ground state yields lower limits of about 2000 cal/mol for the barriers to both CH3 and BH3 group internal rotation. By judicious transfer of structural parameters from related molecules r(P-B) was estimated to be 1.84 \pm 0.02 Å.

Introduction

Compounds containing P-B dative bonds have recently received considerable attention.³⁻⁹ One particularly interesting facet of their properties is the large variation in their stabilities with respect to dissociation: H₃P·BH₃⁶ is completely dissociated at 273 K, and F₃P·BH₃³ is extensively dissociated at the same temperature, whereas (CH₃)₃P·BH₃⁵ may be heated to about 473 K without appreciable dissociation. Attempts to correlate stability with the length of the P-B bond have met with little success; the values for this parameter in the above compounds are 1.937 (5), 1.836 (12), and 1.901 (7) Å, respectively.

The preparation of methyldifluorophosphine-borane, CH₃PF₂·BH₃, has been recently reported by Foester and Cohn.¹⁰ They studied a series of base displacement reactions and found that CH₃PF₂ was surprisingly basic toward BH₃, and they suggested that an unexpected structural deformation upon adduct formation might be the explanation of this ob-

servation. We have recently reported a study of the microwave spectrum of $CH_3PF_{2^{11}}$ as a part of our interest in difluoro-phosphine derivatives.¹²⁻¹⁵ As a continuation of this work, and in an attempt to investigate the speculation of Foester and Cohn about the structure of the complex, we have obtained the microwave spectrum of CH₃PF₂·BH₃.

Experimental Section

The samples of CH3PF2·BH3 and CH3PF2·BD3 were obtained from. Dr. K. Cohn. The spectra were recorded at about 220 K and at room temperature with an Hewlett-Packard 8460A microwave spectrometer in the 18-40-GHz frequency region. The spectra of the ¹¹B and ¹⁰B isotopic species were assigned in their natural isotopic abundance. The estimated errors in the frequency measurements are ± 0.1 MHz.

Spectrum

A projection of the molecule in the *ab* plane is shown in Figure 1. A trial set of rotational constants was calculated from a structure obtained by selection of structural parameters

AIC50142W

Table I. Comparison of Observed^a and Calculated^b Frequencies of Rotational Transitions in Methyldifluorophosphine-Borane

Transition	CH ₃ PF ₂ · ¹¹ BH ₃	CH ₃ PF ₂ · ¹⁰ BH ₃	CH ₃ PF ₂ · ¹¹ BD ₃	$CH_{3}PF_{2} \cdot {}^{10}BD_{3}$
303-404	28,429.52 (0.17)	29,189.94 (0.15)		
3, -4,	28,315.05 (0.14)	29,098.13 (0.14)		
3, -4,	28,904.92 (0.31)	29,697.10 (0.15)		
3,,-4,,	28,645.29 (0.15)		25,581.18 (0.06)	
3,,-4,,	28,882.86 (0.16)		25,714.17 (0.08)	
3, -4,	28,715.01 (0.03)			
45.5	35,434.98 (0.01)	36,386.00 (-0.07)	31,746.83 (-0.03)	
45.	35,359,39 (0.03)	36,333.29 (-0.01)	31,619.57 (0.07)	
45.	36.056.16 (0.06)	37.023.14 (-0.05)	32,234.93 (0.02)	
45.	35,771.60 (-0.04)	36,759.57 (-0.03)	31,958.55 (-0.10)	32,705.33 (0.10)
45	36,158,19 (0.03)	37,206.60 (0.03)	32,201.61 (-0.03)	32,983.32 (0.19)
4	35,901.09(-0.10)	36,915,60 (0.02)	32,029.65 (-0.02)	32,788.54 (0.30)
45.	35.965.72(-0.17)	37.011.35(-0.05)		32,915.84 (-0.21)
45.	35,896,24 (-0,21)	36,915,96 (-0.10)		,
4 -5	35,898,70 (-0.31)			
45.	35,517,35 (0.01)	36.431.29 (-0.09)		
45	36.906.42(-0.08)			
45	39,127.62 (0.12)			
45	38,667,36 (-0.09)			
45			39,616,49 (0.00)	
56	4			39.351.33 (-0.18)
56				39.422.28 (-0.13)

^a In MHz. Estimated uncertainties are ±0.1 MHz. ^b Values in parentheses are observed minus calculated frequencies in MHz.

Table II. Inertial Constants of Methyldifluorophosphine-Borane

	CH ₃ PF ₂ · ¹¹ BH ₃	CH ₃ PF ₂ · ¹⁰ BH ₃	CH ₃ PF ₂ ¹¹ BD ₃	CH ₃ PF ₂ · ¹⁰ BD ₃
A/MHz ^a	4193.95	4198.83	4046.13	4047.16
<i>C</i> /MHz	3507.26	3605.20	3135.43	3207.98
$I_a/u \mathbb{A}^2 \frac{b}{I_b/u \mathbb{A}^2}$ $I_b/u \mathbb{A}^2$	120.5011 138.0978 144.0943	120.3611 134.3242 140.1795	124.9037 154.8981 161.1824	124.8718 151.2847 157.5370
$\frac{P_{aa}/\text{u} $	80.8455 63.2488 57.2523	77.0713 63.1082 57.2528	95.5884 65.5940 59.3097	91.9749 65.5621 59.3097 ^d

^a Estimated uncertainty in rotational constants: ±0.05 MHz. ^b Rotational constant/MHz = 505,376/(moment of inertia/u Å²). ^c $P_{aa} = \frac{1}{2}(I_b + I_c - I_a)$, etc. ^d Assumed.

Figure 1. Projection of $CH_3PF_2 \cdot BH_3$ in its *ab* plane of symmetry showing the orientation of the dipole moment vector. The dipole moment vector points from plus to minus charge.

from CH₃PF₂¹¹ and HPF₂·BH₃.⁴ This structure predicted that both *a*- and *b*-type rotational transitions would be observed, with the spectrum being dominated by *b*-type Q-branch transitions. The observed spectrum was consistent with this prediction, its major feature being strong Q-branch series with band heads having separations of about 1240 and 1700 MHz for the ¹¹BH₃ and ¹¹BD₃ isotopic species, respectively. However, the assignment of the spectra was achieved with the less obvious low-*J a*- and *b*-type R-branch transitions. The corresponding transitions for the ¹⁰BH₃ and ¹⁰BD₃ species were predicted to lie in dense Q-branch frequency regions, and even with the 20% abundance of ¹⁰B it was not possible to assign

Table III. Stark Effect and Dipole Moment^a of Methyldifluorophosphine-Borane

		$d\nu/dE^2$: b
Transition	M	Obsd ^c	Calcd
404-505	1	3.202 (16)	3.196
04 05	2	17.97 (8)	18.02
	3	42.76 (20)	42.74
4, -5, 5	1	3.853 (18)	3.816
	2	20.14 (10)	20.15
	3	47.10 (22)	47.35
$\mu_a^2 = 12.$	390 D ²	$\mu_{\alpha} = 1$	3.52 (5) D
$\mu_b^2 = 3.1$	15 D²	$\mu b =$	1.76 (5) D
$\mu_c^2 = 0.0$	D ² (assun	ned) $\mu = 3$.	94 (5) D

^a Relative to $\mu(OCS) = 0.7152$ D. ^b Hz/(V/cm)². ^c Numbers in parentheses are experimental uncertainties on the last digit(s) quoted.

Table IV. Structural Parameters^a of CH₃PF₂·BH₃

 Parameter	Value ^b	Parameter	Value ^b	
С-Н Р-F Р-С	[1.093] [1.552] [1.800]	Р-В В-Н	1.841 (20) 1.209 (10)	
∠HCH ∠HBH ∠FPF ∠BPC	[109.5] 114.3 (10) 99.8 (20) 118.2 (20)	∠BPF ∠CPF ∠PCH ∠PBH	116.1 (20) 101.9 (20) 109.4 (20) 104.0 (10)	

^a Distances are in angstroms; angles are in degrees. ^b Values in brackets are assumed; values in parentheses are estimated uncertainties.

Table V.	Dipole	Moments	of Phos	phines and	Their BH ₃	Adducts
----------	--------	---------	---------	------------	-----------------------	---------

Phosphine	Dipole moment/D	Ref	BH ₃ adduct dipole moment/D	Ref
PH,	0.58	21	4.00	6
CH ₃ PH ₂	1.10	20	4.66	5
(CH ₁), PH	1.23	22	4.85	9
(CH,),P	1.19	23	4. 9 9	5
PF,	1.03	25	1.64	3
HPF,	1.32	24	2.50	4
CH ₃ PF ₂	2.06	11	3.95	This work

these transitions in the Stark spectrum. Their assignment was however readily achieved with the use of the radiofrequency microwave double-resonance technique described by Wodarczyk and Wilson.¹⁶ The observed transitions are quite broad but no splittings which could definitely be assigned to either internal rotation or nuclear quadrupole coupling were observed. The measured transitions and their deviations from a least-squares rigid-rotor fit are listed in Table I. The corresponding rotational constants, moments of inertia, and planar second moments are given in Table II. No *b*-type low-*J* transitions could be measured for the ¹⁰BD₃ species so its measured *a*-type transitions were fit by constraining P_{cc} to its value in the ¹¹BD₃ species.

Dipole Moment

Quantitative measurements of the Stark effect were made on three M components of each of two transitions in the spectrum of CH₃PF₂·¹¹BH₃. These data are summarized in Table III. Their analysis yielded the following dipole moment components: $\mu_a = 3.52$ (5) D, $\mu_b = 1.76$ (5) D, $\mu_c = 0.0$ D, and $\mu = 3.94$ (5) D relative to μ (OCS) = 0.7152 D.¹⁷ The dipole moment vector makes an angle of 26.6° with the *a* principal axis. Although the sign of this angle and the direction of the dipole moment vector are not determinable from these data, the orientation of the dipole moment is most likely that shown in Figure 1.

Structure

The available data are not sufficient to permit a complete determination of the structure of CH_3PF_2 ·BH₃. Probably the best that can be done is to show that a structure consistent with the structures determined for other phosphine-borane adducts is compatible with the experimental rotational constants.

The presence of a plane of symmetry is strongly supported by the equality, within experimental uncertainty, of P_{cc} for the CH₃PF₂·¹¹BH₃ and CH₃PF₂·¹⁰BH₃ isotopic species. With this plane of symmetry and the assumption of untilted, symmetric methyl and borane groups in the doubly staggered configuration of Figure 1, ten parameters are required to specify the structure of CH₃PF₂·BH₃. Since we have essentially only eight pieces of data, from the isotopic species assigned, at least two further assumptions are necessary in order to calculate a structure from these data. We have chosen to assume a C-H bond length of 1.093 Å and an ∠HCH angle of 109.5°. Also, to provide a check of the internal consistency of the calculation, we have fixed the P-F bond length to be 1.552 Å, its value in HPF₂·BH₃.⁴ The computer program STRFTQ¹⁸ was used to adjust the parameters B-H, P-B, P-C, \angle HBP, \angle BPC, \angle FPF, and \angle BPF to fit the moments of inertia in Table II. Unfortunately, the P-B and P-C distances are highly correlated with respect to this data set, and only their sum is well determined to be 3.642(10) Å. The structure given in Table IV was obtained by fixing the P-C distance to be 1.80 Å by comparison with the structures of CH₃PF₂,¹¹ CH₃PH₂,¹⁹ and CH₃PH₂·BH_{3.5} The uncertainties given in Table IV are intended to reflect the changes caused by reasonable variation of the assumed parameters; however, no allowance for a possible tilt of either the CH₃ or BH₃ groups has been included. The structure given in Table IV must not be regarded as a definitive structure for CH₃PF₂·BH₃ but as the most probable one based on the available inertial data and comparison with other phosphine-borane adducts.

Discussion

A comparison of the dipole moments of $CH_3PF_2^{11}$ and CH_3PF_2 -BH₃ with the dipole moments of other phosphines and their borane adducts is given in Table V.

Table VI presents a comprehensive summary of the structural parameters of all phosphine-borane adducts and the free phosphine molecules which have been studied in the gas phase to date. From the data in this table one can readily see that adduct formation is always accompanied by a

	PH3	PH3·BH3	CH ₃ PH ₂	CH ₃ PH ₂ ·BH ₃	(CH ₃) ₂ PH ((CH ₃) ₂ PH-BH ₃	(CII ₃) ₃ P	(CH ₃) ₃ P·BH ₃	${\rm PF}_3$	$PF_3 \cdot BH_3$	PF_2H	PF ₂ H·BH ₃	CH ₃ PF ₂	CH3PF2·BH3
P−H	1.421	1.399 (3)	1.423 (7)	1.404 (6)	1.419 (5)	1.414 (9)					1.412 (6)	1.409 (4)		
Р <u>-</u> Г									1.570 (2)	1.538 (8)	1.582 (2)	1.552 (6)	1.582 (5)	[1.552]
P-C			1.858 (3)	1.809(6)	1.848 (3)	1.813 (10)	1.843 (3)	1.819 (10)	, ,	, ,			1.825 (2)	[1.800]
B-H _a		1.212 (2)		1.229 (22)		1.216 (5)		1.212 (10)		1.207 (6)		1.226 (5)		1.209 (10)
B-H _s		1.212 (2)		1.234 (23)		1.212 (5)		1.212 (10)		1.207 (6)		1.200(7)		1.209 (10)
P-B .		1.937 (5)		1.906 (6)		1.898 (10)		(7) 1.901 (7)		1.836 (12)		1.832 (9)		1.841 (20)
∠XPX ^b	93.5	101.3 (2)	93.4 (10)	99.9 (4)	99.7 (3)	105.5 (10)	98.9 (2)	105.0 (4)	97.8 (2)	99.8 (10)	99.0 (2)	100.0 (5)	98.4 (5)	99.8 (20)
∠XPY ^c			98.4 (10)	103.2 (6)	97.0 (3)						96.3 (5)	98.6 (2)	97.8 (5)	101.9 (20)
H d87		116.9 (2)		116.3 (6)		118.1 (40)						120.1 (6)		
LBPF										118.0(10)		117.7 (3)		116.1 (20)
- ZBPC				115.7 (4)		114.6(10)								118.2 (20)
∠H _a BH _a		114.6 (2)		112.3 (12)		113.2 (5)		113.5 (5)		115.0 (10)		112.7 (5)		114.3 (10)
∠H _s BH _a		114.6 (2)		116.1 (8)		113.3 (5)		113.5 (5)		115.0(10)		115.9 (4)		114.3 (10)
∠PBH _s		103.6 (2)		104.2 (10)		104.9(4)		104.7 (5)		103.2 (10)		109.9 (3)		104.0 (10)
∠PBH _a		103.6 (2)		102.9 (6)		104.8 (4)		104.7 (5)		103.2 (10)		99.9 (3)		104.0 (10)
Ref	28	9	19	5	22	9	26	5	27	, e	24	4	11	This work
^a Distances values are clo	are in ang e to 1.09	stroms; angle: 3 A and all / F	s arc in degree 4CH values ar	es. Numbers in re close to 109.5	parentheses	are estimated u represents / HPI	ncertainties. H / PPF or	. Values in bra	ckets are assu	med values. 1	Methylgroup	geometrics ar	e not given b	ut all C-H

Table VII. Barriers to Internal Rotation in Phosphines and Phosphine-Borane Adducts

	Barrie	er/(cal/mol)	
Compd	СН,	BH ₃	Ref
CH, PH,	1960		20
CH ₁ PH ₂ ·BH ₃	2490	1570	29
PH, BH,		2470	6
PF , BH ,		3240	3
CH,PF,	2300		11
CH,PF, BH,	>2000	>2000	This work
HPF ₂ ∙BH ₃		3600–450 0	4

shortening of the bond lengths between the phosphorus atom and its attached atoms and also by a flattening of the pyramid of which the phosphorus atom is the apex. The limited structural data on CH3PF2·BH3 are consistent with these two general observations. The P-B bond lengths seem to fall into two groups, greater than 1.90 Å when hydrogen atoms or methyl groups are bonded to the phosphorus and about 1.84 Å when fluorine atoms are attached to the phosphorus. The data on CH₃PF₂·BH₃ also exhibit this effect. These observations about the structures of phosphine-borane adducts have been made before.⁵ They are repeated here to show that the data for CH₃PF₂·BH₃ are consistent with the data for other members of this class of compounds. The structure changes which occur in the phosphine upon adduct formation are consistent with the predictions of elementary bonding models, whereas there seems to be no uniquely compelling explanation for the variation of the observed P-B bond lengths and stabilities of the adducts.⁵ While this study of the structure of CH₃PF₂·BH₃ is by no means complete, the results do not appear to support the speculation of Foester and Cohn¹⁰ concerning an unusual structural deformation in CH3PF2 upon adduct formation.

Table VII summarizes barriers to internal rotation in related compounds. The absence of resolvable splittings in the ground vibrational state of CH₃PF₂·BH₃ places lower limits of about 2000 cal/mol on both the CH3 and BH3 barriers to internal rotation. In CH₃PH₂ formation of the BH₃ adduct has increased the barrier to CH₃ internal rotation by 530 cal/mol, and in PH3-BH3 the substitution of a methyl group on the phosphorus has lowered the barrier to BH₃ group internal rotation by 900 cal/mol. Similar changes applied to the data on CH₃PF₂ and PF₂BH₃ predict values of 2830 and 2340 cal/mol, respectively, for CH3 and BH3 group internal rotation barriers in the present compound. These predictions are quite crude, but they do serve to show that the experimental observation that both barriers in the present compound are greater than 2000 cal/mol is consistent with the data on related compounds.

Registry No. CH3PF2-11BH3, 55606-68-3; CH3PF2-11BD3, 55606-69-4; CH₃PF₂.¹⁰BH₃, 55606-70-7; CH₃PF₂.¹⁰BD₃, 55606-69-4.

References and Notes

- (1) This work was supported in part by grants from the National Science Foundation.
- A preliminary account of this work was presented at the Symposium (2)on Molecular Structure and Spectroscopy, Columbus, Ohio, June 1974.
- R. L. Kuczkowski and D. R. Lide, Jr., J. Chem. Phys., 46, 357 (1967).
- (4) J. P. Pasinski and R. L. Kuczkowski, J. Chem. Phys., 54, 1903 (1971).
- (5) P. S. Bryan and R. L. Kuczkowski, *Inorg. Chem.*, 11, 553 (1972).
 (6) J. R. Durig, Y. S. Li, L. A. Carriera, and J. D. Odom, *J. Am. Chem.*
- Soc., 95, 2491 (1973).
- (7) J. D. Odom, B. A. Hudgens, and J. R. Durig, J. Phys. Chem., 77, 1972 (1973)
- (8)J. D. Odom, S. Riethmiller, S. J. Meischen, and J. R. Durig, J. Mol. Struct., 20, 471 (1974).
- (9) J. R. Durig, B. A. Hudgens, Y. S. Li, and J. D. Odom, J. Chem. Phys., 61, 4890 (1974).
- (10) R. Foester and K. Cohn, Inorg. Chem., 11, 2590 (1972).
- (11) E. G. Codding, R. A. Creswell, and R. H. Schwendeman, Inorg. Chem., 13, 856 (1974).
- (12) A. H. Brittain, J. E. Smith, P. L. Lee, K. Cohn, and R. H. Schwendeman, J. Am. Chem. Soc., 93, 6772 (1971). (13) A. H. Brittain, J. E. Smith, and R. H. Schwendeman, Inorg. Chem.,
- 11, 39 (1972)
- (14) P. L. Lee, K. Cohn, and R. H. Schwendeman, Inorg. Chem., 11, 1917 (1972).
- (15) E. G. Codding, C. E. Jones, and R. H. Schwendeman, Inorg. Chem., 13, 178 (1974).
- (16) F. J. Wodarczyk and E. B. Wilson, J. Mol. Spectrosc., 37, 445 (1971).
- J. S. Muenter, J. Chem. Phys., 48, 4544 (1968). (17)
- (18) R. H. Schwendeman, in "Critical Evaluation of Chemical and Physical Structural Information", D. R. Lide, Jr., and M. A. Paul, Ed., National Academy of Sciences, Washington, D.C., 1974, Chapter III.3.
- (19) L. S. Bartell, J. Chem. Phys., 32, 832 (1960).
 (20) T. Kojima, E. L. Breig, and C. C. Lin, J. Chem. Phys., 35, 2139 (1961).
 (21) C. A. Burrus, J. Chem. Phys., 28, 427 (1958).
- (22) R. Nelson, J. Chem. Phys., 39, 2382 (1963).

- (23) D. R. Lide and D. E. Mann. J. Chem. Phys., 29, 914 (1958).
 (24) R. L. Kuczkowski, J. Am. Chem. Soc., 90, 1705 (1968).
 (25) S. N. Ghosh, R. Trambarulo, and W. Gordy, J. Chem. Phys., 21, 308 (1953)
- (26) P. S. Bryan and R. L. Kuczkowski, J. Chem. Phys., 55, 3049 (1971).
- (27) Y. Morino, K. Kuchitsu, and T. Moritani, *Inorg. Chem.*, 8, 867 (1969).
 (28) C. A. Burrus, A. Jache, and W. Gordy, *Phys. Rev.*, 95, 706 (1954).
 (29) J. R. Durig, V. F. Kalasinsky, Y. S. Li, and J. D. Odom, *J. Phys. Chem.*,
- 79, 468 (1975).

Contribution from the Technical University of Denmark, Chemistry Department A, DK-2800 Lyngby, Denmark

Lower Oxidation States of Selenium. I. Spectrophotometric Study of the Selenium-Selenium Tetrachloride System in a Molten NaCl-AlCl₃ Eutectic Mixture at 150°

R. FEHRMANN, N. J. BJERRUM,* and H. A. ANDREASEN

Received February 4, 1975

Four different solvated selenium species with low positive oxidation states were prepared by reduction of dilute solutions of SeCl4 in a NaCl-AlCl3 (37:63 mol %) melt at 150° with elementary selenium. A statistical analysis of the spectrophotometric measurements of the resulting melts showed that the two higher oxidation states of these species were +1/2and +1/4 (or +4/17) whereas no accurate value could be calculated for the two lower oxidation states. The most likely values, however, of these lower oxidation states were found to be +1/6 and +1/8. Spectra for the possible species Se₄²⁺, Seg²⁺, Se₁₂²⁺, and Se₁₆²⁺ were also calculated.

Introduction

It has been known for a long time that selenium in analogy with tellurium forms colored solutions in sulfuric acid.¹ A fairly recent investigation by Gillespie and coworkers has revealed that these colored solutions contain the Se4²⁺ and Se8²⁺ ions.²

AIC500756

The results obtained by Corbett and coworkers³ seem to indicate that the same two ions are formed in chloroaluminate melts. The structure of $Se_{4^{2+}}$ in $Se_{4}(HS_{2}O_{7})_{2}$ is square planar⁴ and the structure of Se_{8}^{2+} in $Se_{8}(AlCl_{4})_{2}$ is bicyclic.⁵ In the present work the solute selenium species in a NaCl-AlCl3